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It was shown earlier by I. M. Lifshitz and two of us that the evolution of the 
relativistic cosmological models towards the singularity undergoes spontaneous 
stochastization/~) In the present paper it is shown that the statistical parameters 
of this evolution can be calculated in an exact manner. From the point of view 
of the general ergodic theory we deal here with a specific mode of 
stochastization of a deterministic dynamical system with a five-dimensional 
phase space. The knowledge of the source of stochasticity makes it possible to 
develop a quantitative statistical theory with appreciable completeness. 
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1. INTRODUCTION 

The appearance of singularities with respect to time in nonstationary 
solutions of the Einstein equations is one of the most remarkable features of 
general relativity; it may well be that its implications are not yet fully 
appreciated. 

There exist different types of singularities in the solutions of the Einstein 
equations. They can be characterized by indicating three "scale functions" 
a(t), b(t), c(t) which determine the temporal evolution of the spatial scales in 
three different directions. It is implied that the solution is formulated in a 
synchronous reference system, i.e., that the four-dimensional interval ds2= 
dt 2 - d l  2, dl being the spatial line element and t the universal time, 
synchronized over the entire space. 

Various types of singularities differ by the degree of their generality. 
The latter can be measured by the number of "physically arbitrary" 
functions of the spatial coordinates, which is contained in the broadest class 
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of the solutions which admit a singularity of the given type. The general 
solution should contain such a number of arbitrary functions that any" initial 
conditions (distribution and motion of matter, distribution of the free 
gravitational field) could be satisfied at a chosen moment of time. This 
number is four for empty space and eight for space containing matter (see 
Ref. 2, Sec. 95). 

In the widely known homogeneous and isotropic Friedman model the 
singularity is characterized by the functions a ~ b ~ e ~ v/t (singularity is at 
t -- 0). However, this type of singularity possesses a low degree of generality; 
the Friedman solution can be generalized but only to contain merely three 
physically arbitrary coordinate functions (see Ref. 3, Sec. 4). 

Considerably greater is the degree of generality of a singularity of the 
Kasner type for which 

a ~ t  p~, b ~ t  po, c ~ t  pc (1.1) 

where Pa, Pb, P~ are three numbers (the Kasner exponents), satisfying the 
conditions 

2 2 
Pa + Pb + Pe = 1, P] + Pb + Pe = 1 (1.2) 

The class of solutions which possess a singularity of this type contains seven 
physically arbitrary spatial functions---only one less than is necessary for a 
general solution (see Ref. 3, Sec. 3). 

But most general is the singularity of a complicated oscillatory type. 
The evolution of this model on approaching the singular point can be 
described as an infinite succession of interchanging "Kasner epochs" with a 
certain law of replacement of the Kasner exponents when passing over from 
one epoch to the next one. The singularity of this type was first discovered 
for a vacuum homogeneous model of the Bianchi type IX and VIII, and 
thereupon generalized to the presence of matter. The introduction of matter 
generates a new property into the evolution of the model: rotation of the 
Kasner axes [i.e., directions to which the scale functions (1.1) refer] during 
the interchange of the Kasner epochs, but the law of interchange of the 
exponents remains the same. The importance of this type of singularities in 
homogeneous models is due to the fact that it is just the type of singularity in 
the general cosmological solution of the Einstein equations. The solutions for 
homogeneous models of the Bianchi types VIII and IX serve as a prototype 
for construction of the general solution [a review exposition of the relevant 
results, among them the derivation of the basic rule (2.3) below is given in 
Refs. 4 and 5). 

It is essential that the law of replacement of the Kasner exponents in the 
oscillatory regime of approach to the singularity in the general 
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inhomogeneous solution remains the same as in homogeneous  models. It is 
just this law that  leads to the most  important  property:  spontaneous 
stochastization of  the behavior  of  the model on approach to singularity and 
the "loss of  m e m o r y "  of the initial conditions prescribed at some instant of  
t ime t = t o > 0. Thus stochasticity turns out to be a general property of  
relativistic cosmological  models in the neighbourhood of the singularity. 

The stochasticity was first pointed out by I. M. Lifshitz and two of us 
in Ref. 1 (cited henceforth as I). It was shown that the knowledge of the 
source of stochastization makes  it possible to construct  with a considerable 
completeness a statistical theory of the evolution of the cosmological  model 
in asymptot ic  vicinity to singularity. For  a calculation of parameters  of  this 
evolution an approximate  method was devised, the exactness of  which is 
difficult to estimate beforehand. The aim of the present paper  is to shown 
that  these parameters  can be calculated exactly (a short account  was 
published in Ref. 6). 

In I the theory was developed for a homogeneous model without the 
rotation of the Kasner  axes; this was sufficient for the elucidation of 
statistical properties ensuing from the law of replacement  of  the Kasner  
exponents. The same will be adopted here; we avoid the complicat ions which 
could be brought  about  by the rotat ion of the axes and by inhomogeneity.  

The temporal  evolution of the vacuum homogeneous model of  the 
Bianchi type IX  is governed by the equations 

2a"  = (b 2 - c2) 2 - a 4, 2fl" = (a 2 - cZ) z - b 4 
(1.3) 

27" = (a 2 -- ba) 2 - c 4 

Cttfl' + a '  7' ~-fl '7 t -- l (a4 + b 4 q- c 4 - -  2a2b 2 --  2a2c 2 - 2b2c 2) = 0 (1.4) 

where along with the functions a, b, c are introduced their logari thms 

a = In a, fl = in b, 7 = in c (1.5) 

the prime denotes differentiation with respct to the variable r related to the 
time t by the equation 

dt  = abc  dr  (1.6) 

The Eq. (1.4) contains only the first derivatives and thus plays the role of  an 
additional restriction, imposed on the initial conditions for Eqs. (1.3) (see 
Ref. 4, Sec. 3). It is easy to verify that  the derivative of  the expression (1.4) 
with respect to r is indeed identically zero due to the Eqs. (1.3); thus if the 
solution of  Eqs. (1.3) satisfies the condition (1.4) in an initial instant of  time, 
the latter will always be satisfied. 
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From a formal point of view we deal with a deterministic dynamical 
model, governed by a system of three ordinary differential equations (1.3) 
[but due to one additional condition (1.4) the phase space of this system is 
actually not six but five dimensional). Thus, apart from the actual profound 
cosmological significance of this system, we encounter here a specific mode 
of spontaneous stochastization of a deterministic system--a phenomenon 
akin to those discovered recently in many physical problems. 

The subject will be presented in such a manner as to allow reading this 
paper without extensive study of previous work. The basic assertions and 
previous results needed for understanding will be introduced without 
derivations, with due references. 

2. THE S O U R C E  OF S T O C H A S T I C I T Y  

Hencefoth we shall denote by Pl , P2 , P3  (with numerical indices)the 
Kasner exponents arranged in a fixed order with respect to their magnitude: 
Pl < P2 < P3. These triples of numbers can be parametrized in the form 

p ,  = - u / f ( u ) ,  P2 = (1 + u)/ f(u) ,  P3 = u(1 + u)/ f (u)  
(2.1) 

f ( u ) =  l + u + u 2 

where the parameter u runs through the values in the region u >/1. On the 
other hand, values 0 < u < 1 can be reduced to the same region in view of 
the formulas 

pl(1 /u)  = pa(U), pz(1/u) = P3(U), p3(1/u) = p2(u) (2.2) 

As u decreases from ~ to 1, the exponent Pl decreases monotonically, while 
P2 and P3 increase monotonically in the ranges 

0/> pl />  -1 /3 ,  0 ~< P2 ~ 2/3, 2/3 ~ P3 ~ 1 

The exponent Pl is always negative, exponents P2 and P3 are positive and it is 
always P3 ) P2. 

The Kasner regime is a solution of Eqs. (1.3)-(1.4) when all the terms 
in the right-hand sides can be neglected; the time interval during which it is 
admissible we call a Kasner epoch. Such an interval is certainly cur short 
with decreasing t since the right-hand sides of Eqs. (1.3) always contain an 
increasing term. For instance, if the negative exponent refers to the function 
a(t) (Pa = Pl) the perturbation of the Kasner regime will be due to the terms 
a4; the remaining terms decrease with decreasing t. This perturbation leads 
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after a brief transitional period to an establishment of a new Kasner epoch 
with the following rule of replacement of the exponents: if 

Pa = pl(U), Pb = pz(U), Pc = P3(U) 

then (2.3) 

p" = p2(u - 1), P'b = P l (  u - 1), P'3 = P3( u - -  1) 

where the primed exponents refer to the new epoch [see Ref. 4, Sec. 3; a 
concise analysis of the system (1.3)-(1.4) and the derivation of the rule (2.3) 
is also given in ReL2, Sec. 118]. The function a(t)  acquires a positive 
exponent and starts to decrease (with decreasing t); the function b(t)  acquires 
a negative exponent and starts to increase; the function c(t) continues to 
decrease. 

The subsequent evolution with the increasing function b(t)  leads in an 
analogous way to the next interchange of the Kasner epochs and so on. The 
successive interchanges according to the rule (2.3), accompanied by a 
bouncing of the negative exponent between the functions a(t)  and b(t), 
continues as long as the integral part of the initial value of u is exhausted, 
i.e., until u becomes less than unity. The value u < 1 transforms into u > 1 
according to (2.2); at this moment either the exponent Pa ot Pb is negative 
and Pc becomes the smaller one of the two positive exponents (Pc = P2).  The 
next sequence of changes will bounce the negative exponent between the 
functions c and a or between c and b. For an arbitrary (irrational) initial 
value of u the process continues indefinitely. 

Thus the evolution of the model on approaching the singularity consists 
of successive periods (we shall call them for brevity "eras") during which 
two of the scale functions oscillate and the third one decreases 
monotonically. On passing from one era to another the monotonic decrease 
is transferred to another of the three scale functions. 

To each (sth) era there corresponds a series of values of the parameter u 
starting with a certain largest one, u~ max) and reaching the smallest one, 
/,/(s min) ( 1, via the v a l u e s  /,/(s max)  - -  1, U~ max) - -  2 ..... We put 

u(max) = ks + xs ' u(min) (2.4) 
s " ' s  "= X s  

i.e., 

k, = [u~m"x) l, X, = {U~ max) } (2.5) 

(the square brackets denote the integer part of a number and the curly 
brackets denote its fractional part). The number k s determines the length of 
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the era measured in terms of the number of Kasner epochs is contains. For 
the next era 

u • m " •  ks+, [1/xs] (2.6) S + I  - -  

The sequence of the lengths of the successive eras has a character of a 
random process. The source of this stochasticity in just the rule (2.6). This 
rule states, in other words, that if the entire infinite sequence begins with a 
certain initial value N 0,,(re"x) = k0 + x0 ' then the lengths of the eras k 0, kl,  k 2,... 
are the numbers in the continuous fraction expansion 

1 
u(max) = k~ + 1 (2.7) 

kl-~ 
k2 + .- .  

This expansion corresponds to the mapping transformation of the 
interval [0, 1 ] onto itself by the formula 

rx= {l/x}, i.e., X s +  1 = {I/Xs} (2.8) 

This transformation belongs to the so-called expanding transformations 
of the interval [0, 1], i.e., transformations x ~ f ( x )  with ]f'(x)] > 1. Such 
transformations possess the property of exponential instability: if we take 
initially two close points their mutual distance increases exponentially under 
the iterations of the transformations. It is well known that the exponential 
instability leads to the appearance of strong stochastic properties. 

One can arrive at a probabilistic description of such a sequence by 
considering not a definite initial value x 0 but the values x o - x  distributed 
over the interval [0, 1] in accordance with a certain probability density 
wo(x). Then all the subsequent x s will also be distributed by certain 
statistical laws ws(x). Stochastization is manifested in functions Ws(X) 
tending to a stationary (i.e., independent of s) limiting distribution w(x), 
which is completely independent of the initial distribution wo(x ) (in general 
ergodic theory this property is known as mixing (see Ref. 7). The density of 
this limiting distribution is 

w(x) = 1/(1 + x) In 2 (2.9) 

This formula (which was known already to Gauss) gives the density of the 
invariant measure of the transformation (2.8). 

In order for the sth era to have a length ks, the preceding era must 
terminate with a number x in the interval between 1/(1 + k) and 1/k. 
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Therefore the probability for an era to have a length k is equal (in the 
stationary limit) to 

~l/k w(x) dx 1 (k + 1) 2 
W(k) = -,/t~+k) = ~ - ~ -  In k(k + 2~ (2.10) 

At large values of k 

W(k) ~ 1/k 2 In 2 (2.11) 

In relating the statistical properties of the cosmological model with the 
ergodic properties of the transformation (2.8) an important point must be 
mentioned. In an infinite sequence of numbers x constructed in accordance 
with this rule, there will be observed arbitrary small (but never vanishing) 
values of x and accordingly arbitrarilly large lengths k. It was pointed out in 
Secs. 2 and 3 of Ref. 1, that such cases can (by no means necessarily!) give 
rise to certain specific situations when the notion of eras, as of sequences of 
Kasner epochs interchanging each other according to the rule (2.3), loses its 
meaning (although the oscillatory mode of evolution of the model still 
persists). Such an "anomalous" situation can be manifested, for instance, in 
the necessity to retain in the right-hand side of Eqs. (1.3) terms not only with 
one of the functions a , b , c  (say, a4), as is the case in the "regular" 
interchange of the Kasner epochs, but simultaneously with two of them (say, 
a 4, b 4, a2b2). 

On emerging from an "anomalous" series of oscillations a succession of 
regular eras is restored. Statistical analysis of the behavior of the model 
which is entirely based on regular iterations of the transformations (2.6) is 
corroborated by an important theorem: the probability of the appearance of 
anomalous cases tends asymptotically to zero as the number of iterations 
s -~ ~ (i.e., the time t ~ 0). The proof of this assertion was given in Sec. 4 of 
Ref. 1 and we shall not repeat it here. We merely record that its validity is 
largely due to a very rapid rate of increase of the oscillation amplitudes 
during every era and especially in transition from one era to the next one. 

We shall be interested here not in the process of the relaxation of the 
cosmological model to the "stationary" statistical regime (with t ~ 0 starting 
from a given "initial instant"), but with the properties of this regime itself 
with due account taken for the concrete laws of the variation of the physical 
characteristics of the model during the successive eras. 

3. RECURRENCE F O R M U L A S  FOR SUCCESSIVE ERAS 

The solution of the problem thus stated is based both on the probability 
distributions (2.9)-(2.11) and on the formulas describing the variation of the 
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scale functions during successive eras. These variations are subject to certain 
regularities which become considerably simpler in the asymptotic vicinity to 
the singularity. We shall repeat here some necessary formulas with a more 
complete (as compared to Ref. 1, Sec. 2) justification of the adopted approx- 
imations. 

During each Kasner epoch the product abe = A t  with its own coefficient 
A; correspondingly, a + f l + y = l n A + l n t ;  we show now that in this 
equation the constant term In A can be neglected in comparison with In t. 

On changing over from one epoch (with a given value of the parameter 
u) to the next epoch the constant A is multiplied by 

l + 2 P x = ( 1 - - u + u Z ) / ( l + u + u  2)< 1 

(see Ref. 4, Sec. 2). Thus a systematic decrease in A takes place. But it is 
essential that the mean (with respect to the lengths k of eras) value of the 
entire variation of In A during an era is finite. Actually the divergence of the 
mean value could be due only to a too rapid increase of this variation with 
increasing k. For large value of the parameter u we have ln(1 + 2P l )~  - 2 / u .  
For a large k the maximal value U (max) = k + x ~ k .  Hence the entire 
variation of In A during an era is given by a sum of the form 

1 1 1 
S~ In(1 + 2 p l )  . . . .  + ~ - ~  + ~-~-]- + -~- 

only the terms which correspond to large values of u are written down here. 
When k increases this sum increases as ink. But the probability for an 
appearance of an era of a large length k decreases as 1/k 2 according to 
(2.11); hence the mean value of the sum above is finite. Consequently, the 
systematic variation of the quantity In A over a large number of eras will be 
proportional to this number. But it will be shown in the following section 
[see (5.9)] that with t ~ 0 the number s increases merely as ln lln t t. Thus in 
the asymptotic limit of arbitrarily small t the term In A can indeed be 
neglected as compared to In t. In this approximation we have 3 

a + /~  + ~, = - s ~  (3 .1)  

where s denotes the "logarithmic time": 

O = - l n  t (3.2) 

Thus the adopted approximation corresponds to neglecting all the quantities 
whose ratio to [lnt[ tends to zero as t-* 0. 

3 Since a, b, e have the dimension of length, their logarithms are defined only up to an 
additive constant which depends on the choice of the length units; in this sense the equality 
(3.1) has a conditional meaning corresponding to a certain choice of the zero value of 
a,/L 7. 
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The magnitudes of maxima of the oscillating scale functions are also 
subject to a systematic variation. Denote by area x and area • two successive 
maxima (of course they belong actually to two different of the functions 
a, b, e). Then 

a /na2amax  = [ ( U -  1)/U] t/2 

(see Ref. 1, Sec. 2). For u ~> 1 we find that area x - area • ~ - 1 / 2 u .  In the same 
way as it was done above for the quantity in A, one can hence deduce that 
the mean decrease in the height of the maxima during an era is finite and the 
total decrease over a large number of eras increases with t-~ 0 merely as 
In f/. At the same time the lowering of the minima, and by the same token 
the increase of the amplitude of the oscillations, proceed (as we shall see) 
proportional to 12. In correspondence with the adopted approximation we 
neglect the lowering of the maxima in comparison with the increase of the 
amplitudes and put arnax = 0, ]~max = 0,  7max = 0 for the maximal values of all 
oscillating functions so that the quantities a, fl, 7 run only through negative 
values that are connected with one another at each instant of time by the 
relation (3.1). 

Finally in the same approximation we can neglect the widths (in time) 
of the intermediate regions between the adjacent Kasner epochs, i.e., consider 
the interchanges of the epochs as instantaneous. Figure 1 shows 
schematically the course of variation of the functions a(X?), fl(~), 7(~) in 
this approximation during one era and the beginning of the next one; it is 
composed of straight segments, each of which corresponds to a Kasner 
epoch. [In this approximation the intervals of the logarithmic time 12 
coincide with the intervals of the variable r, defined by (1.6).] 

In what follows we shall discuss statistical properties of the sequence of 
eras. The index s numbers eras beginning from an arbitrarilly chosen initial 
one (s = 0). The symbol X2 s denotes the initial instant of the sth era (defined 
as the instant when the scale function which was monotonically decreasing 
during the preceding era begins to increase). The initial amplitudes of that 
pair from among the functions a, fl, 7 which experiences oscillation in a given 
era we denote as 6,12s; the quantities 6 s (which assume values between 0 and 
1) measure these amplitudes in units of the corresponding 12,. The 
recurrence formulas which determine the rules of transition from an era to 
the next one are 4 

12s = l + r i s k  , k s + x . ~ +  = - e x p , ,  (3.3) 

3,+1 = 1 (ks~X, + 1)3, (3.4) 
1 + 6sk , (k  ~ + x s + 1/x~) 

4 In Sec. 4 of Ref. 1 formula (3.4) contained a misprint in the denominator. 



106 Khalatnikov et al. 

Fig. 1. 

Q 

/, 

Schematic plot of evolution of the logarithmic scale functions towards the 
singularity. 

The symbol  ~s is introduced in (3.3) for future use. Iteration of this formula 
gives 

[2s/K2 o = exp _~ ~p (3.5) 
p = l  

4. PROBABILITY DISTRIBUTION OF THE 
QUANTITIES 6= 

The peculiarity of  the statistical properties of  the behavior of  the system 
under consideration (the cosmological  model)  is due to a considerable degree 
to a comparat ively  low rate of  decrease of  the probabil i ty distribution W(k) 
(2.10)-(2.11) for large k. The decrease is so slow that  the mean value of k 
calculated from this distribution diverges logarithmically. If  averaging were 
cut off  at a very large but finite value k = JU, we would obtain (k)  ~ In JU. 
However,  the meaning of a mean value in this case is very limited in view of 
its instability: the fluctuations of  the number  k diverge even more rapidly 
than its mean value. A more adequate statistical characteristics of  the 
sequence of a large number  J U  of Kasner  epochs could be the probabil i ty for 
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a randomly picked up epoch to belong to an era of a length k ~< K, where K 
is large. This probability equals In Ki ln  .A/. It is small if 1 ~ K ~ J / .  In this 
sense one can say that an epoch randomly chosen from the sequence belongs 
with a large probability to a long era [in spite of the fact that according to 
(2.10)-(2.11) the probabilities of the appearance of long eras themselves are 
small in comparison with the probabilities of short eras, among them of an 
era with k = 1). 

The quantities fis have a stable stationary statistical distribution P(6) 
and a stable (small relative fluctuations) mean value. For their determination 
in I was used (with due reservations) an approximate method based on the 
assumption of statistical independence of the random quantity 6~ of the 
random quantities ks, x~. For the function P(6) an integral equation was set 
up which expressed the fact that the quantities 6~+i and 6 s interconnected by 
the relation (3.4) have the same distribution; this equation was solved 
numerically. It will be shown now that the distribution P(fi) can actually be 
found exactly by an analytical method. 

Since we are interested in statistical properties in the stationary limit, it 
is reasonable to introduce the so-called natural extension of the transfor- 
mation (2.8) by continuing it without limit to negative indices. Otherwise 
stated we pass over from a one-sided infinite sequence of the numbers 
(xo ,x l ,x2 , . . . ) ,  connected by the equalities (2.8), to a "doubly infinite" 
sequence X =  (..., x_ i ,  x0, xl ,  x 2 .... ) of the numbers which are connected by 
the same equalities for all - o o  < s < oo. Of course, such expansion is not 
unique in the literal meaning of the word (since Xs_ 1 is not determined 
uniquely by x~), but all statistical properties of the extended sequence are 
uniform over its entire length, i.e., are invariant with respect to arbitrary shift 
(and x 0 loses its meaning of an "initial" condition). The sequence X is 
equivalent to a sequence of integers K = (..., k _ l ,  k o, k l ,  kz,... ), constructed 
by the rule k s = [1Ix s_ 1]. Inversely, every number of X is determined by the 
integers of K as an infinite continuous fraction 

1 
x, = = X + l  (4.1) 

1 
k~+l + 

ks+2 + . . .  

[the convenience of introducing the notation x++ 1 with an index shifted by 1 
will become clear in the following---cf. (4.4)]. For concise notation we shall 
denote continuous fraction simply by enumeration (in square brackets) of its 
denominators; then the definition of x + can be written as 

x + = [ks ,  k s + l  .... ] (4.2) 
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We also introduce the quantit ies which are defined by a cont inuous fract ion 
with a re t rograde (in the direction of  diminishing indices) sequence of  
denominators  

x ;  = G - l , k , - 2  .... ] (4.3) 

We t ransform now the recurrence relat ion (3.4) by introducing 
temporar i ly  the notat ion t/$ = (1 - (~s)/~s. Then (3.4) can be rewrit ten as 

~]s+lXs = 1/(~sXs--1 +ks) 

By i terat ion we arrive at an infinite cont inuous fract ion 

r/s + 1 xs = [ks, k s -  l ,-.. ] = xs + 1 

Hence r / ~ - - x S x  + and finally 

fis = x+/( x+ + x~-) (4.4) 

This expression for fis contains only two (instead of  three) random quantit ies 

x + and x 7 ,  each of  which assumes values in the interval [0, 1 ]. 
It  follows from the definition (4.3) that  1/xT+l=x; + k  S= 

x 7 + [I/x +]. Hence the shift of  the entire sequence X by one step to the 
right means a jo in t  t ransformat ion  of  the quantit ies x + and x~- accoding to 

Xs++l = = + ] + x ; )  (4.5)  

This is a one-to-one mapping in the unit square. Thus we have now a one-to- 
one t ransformat ion of  two quanti t ies instead of  a not one-to:one transfor-  

mat ion  (2.8) of  one quanti ty.  
The quantit ies x + and x ;  have a jo int  s ta t ionary dis tr ibut ion 

P(x +, x-) .  Since (4.5) is a one-to-one t ransformat ion,  the condi t ion for the 
dis tr ibut ion to be s ta t ionary  is expressed s imply by a function equation 

P(xs+,X[ ) = P(x+, ,  x~+ l)J (4.6) 

where J is the Jacobian  of  the t ransformat ion.  The normal ized  solution of  

this equation is 
P(x +, x - ) = 1/(1 + x+x-)  2 In 2 (4.7) 

[its integrat ion over x + or x -  yields the function w(x) (2.9)]. 5 A 

5 The reduction of the transformation to the one-to-one mapping was used already by 
Chernoff and Barrow (8~ and they obtained a formula of the form of (4.7) but for other 
variables; their paper does not contain applications to the problems which are considered 
here. As to the preceding papers by Barrow, (9) they contain nothing beyond the main idea 
(taken from I) about the connection of stochasticity in cosmological models with the 
transformation (2.8)and the distributions (2.9)and (2.10) (and the repetition of some welt- 
known statements of the general ergodic theory). 
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constructive derivation of this formula is given in the Appendix. But its 
correctness can of course be verified also by a direct calculation; the 
Jacobian of the transformation (4.5) is 

j.=O(X+l,Xs+l) ~xLI ~xs+l (xs+ l~  2 
~(x~+,x + ) &s  + ax ;  ~, x~ + ] 

(in its calculation one must note that [1/x +] + {l/x+} = 1/x+). 
Since by (4.4) 6 S is expressed in terms of the random quantities x + and 

x~-, the knowledge of their joint distribution makes it possible to calculate 
the statistical distribution P(6) by integrating P(x+,x -) over one of the 
variables at a constant value of 6. Due to symmetry of the function (4.7) 
with respect to the variables x + and x -  we have P ( 6 ) =  P ( 1 -  6), i.e., the 
function P(6) is symmetrical with respect to the point 6 = 1/2. We have 

P(6)de~=d6 P X+, l _ a  ] ~ x+ 

On evaluating this integral (for 0 ~ fi ~ 1/2 and then making use of the 
aforementioned symmetry), we obtain finally 

P(6)- 1/([1-  26 i + 1)In 2 (4.8) 

The solid line in Fig. 2 shows the plot of this function. The dotted line 
shows the plot of P(6) obtained by the approximate method devised in I by 

p ~  

Fig. 2. 

l,q 

1~2 - 

,I I I 
o o,25 a, so o, To 

8 
The probability distribution function P(~), Full line: exact function (4.8). Broken 

line: approximate solution of the integral equation, 

822/38/1 2-8 
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numerical solution of an integral equation. Both curves appear to be 
strikingly similar/6~ 

The mean value (~) = 1/2 already as a result of the symmetry of the 
function P(~). Thus the mean value of the initial (in every era) amplitude of 
oscillations of the functions a, fl, ~ increases as/2/2.6 

5. STATISTICAL PARAMETERS OF THE EVOLUTION 
OF THE MODEL 

The expression (3.5) determines the interval of logarithmic time for a 
succession of a certain number s o f  eras. A direct averaging of this 
expression, however, would be meaningless, for the mean values of the quan- 
tities exp ~s are unstable in the sense indicated in Sec. 4- - the  fluctuations 
increase even more rapidly than the mean value itself with increasing region 
of averaging. This instability is eliminated by taking the logarithm: the quan- 
tities ~s have a stable statistical distribution. We denote by r s the "double 
logarithmic" time interval: 

r, = ln(X2,/J'20)= in Ilntsl--lnllnt01--- ~ ~, (5.1) 
p = l  

Its mean value ( r , ) =  s(~). 
To calculate (~) we note that the definition (3.3) can be rewritten as 

~, = In (ks + Xs)Os _ In Os (5.2) 
Xs(1 - fi,+l) x ,x , - l (1  -~s+, )  

For the stationary distribution ( lnx~)=(lnXs_l) ,  and in virtue of the 
symmetry of the function P(fi) also (ln fis) = (ln(1 - fis+ ~)). Hence 

1 
(~) = -2 ( l n  x) = --2 ;o w(x) in x dx = n2/6 In 2 = 2.37 

[w(x) from (2.9)1. Thus 
(rs) = 2.37s (5.3) 

6 The plot of  the function P(c~) in Fig. 2 in 1 is incorrect for several reasons. Apparently some 
errors were admitted in preparing the program for numerical solution of the integral 
equation. Also a "forced" reduction of the values P(0) and P(1) was performed in view of 
the incorrect footnote in I, Sec. 4. It is to be emphasized that the finite probability of  the 
value 6 = 0 does not mean the possibility of the initial amplitude of oscillation becoming 
zero (which would be in contradiction to the regular course of evolution shown in Fig. I). 
Indeed it is seen from (3.4) that c~s+l tends to zero with x s ~ 0 proportional to x , ;  but the 
amplitude is given by the product 6s+lJ?s+~, which tends to a finite limit since the 
expression (3.3) contains a term with i / x  s. 
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For large s the number of terms in the sum (5.1) is large and according 
to general theorems of the ergodic theory the values of r s are distributed 
around (L)  according to Gauss' law with the density 

p(r,) = (2rrD,)-1/2 exp [ - ( r ,  -- (r,))2/2D,] (5.4) 

Calculation of the variance D r is more complicated since not only the 
knowledge of (~) and (~2) are needed but also of the correlations (~p~p,). 
The calculation can be simplified by rearranging the terms in the sum (5.1). 
By using (5.2) we rewrite this sum as 

k ~v = l n  12I (l_r 1 
p = l  p = l  

a, 
= In ;=112I (1 - o)~;'p'x'_ 1 t- in x~ + In 

1 - -  ~ s +  1 

The last two terms do not increase with increasing s; being interested in the 
limiting laws for large s we can omit these terms. Then 

k ~p= ~ ln(1/X+pX;) (5.5) 
p = l  p = l  

[here also the expression (4.4) for tip is taken into account]. We notice that 
to the same accuracy (i.e., up to the terms which do not increase with s) the 
equality 

ln xp + = k ln xp  (5.6) 
p = l  p = l  

is valid. Indeed in virtue of (4.5) we have 

x++l + 1/x~-+ 1 ---- 1/X + + X; 

and hence 

ln(l+xp+lxp++ - l ) - l n x p +  1-  = l n ( l + x + x ; ) - l n x + p  

By summing this identity over p we obtain (5.6). Finally we change (again 
with the same accuracy) x + for xp under the summation sign and thus 
represent r s as 

r s = ~ t/p, ~/p = --2 In xp (5.7) 
p = l  
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The variance of this sum in the limit of large s is 

D ~ = ( ( r  s - ( r s ) ) 2 ) ~ s  l ( r / 2 ) - ( r / ) 2 + 2  ~ ((r /or/p)-(r /)2) I (5.8) 
p = l  

It is taken into account here that in virtue of the statistical homogeneity of 
the sequence X the correlations (r/pr/p,) depend only on the differences 
I P -  P '  I. The mean value ( r / )=  (~); the mean square 

1 

(r/2) = 4 ;o w(x) In 2 x dx = 6~(3)/ln 2 = 10.40 

By taking into account also the values of correlations (r/0r/p) with p = 1, 2, 3 
(calculated numerically) we arrive at the final result D T = (3.5 + 0, 1)s. 

With increasing s the relative fluctuation D~2/irs) tends to zero as 
s-1/2. In other words, the statistical relation (5.3) becomes almost certain at 
large s. This makes it possible to invert the relation, i.e., to represent it as the 
dependence of the average number of the eras s T that are interchanged in a 
given interval r of the double logarithmic time: 

(G) = 0.42r (5.9) 

The statistical distribution of the exact values of s~ around its average is also 
Gaussian with the variance 

Ds, = 3.5(G)3/r 2 = 0.26r 

It was already mentioned in Sec. 1 that the source of stochasticity of the 
model--the rule of interchange of the Kasner exponents--remains the same 
upon introduction of matter. All the results pertaining the evolution of the 
matter density which were formulated in Sec. 4 of I remain unaltered and we 
shall not repeat them here. 

D E D I C A T I O N  

The basic work I was accomplished in active cooperation with II'ya M. 
Lifshitz. He was not only a distinguished theoretical physicist but also an 
excellent mathematician. His profound insight into statistical problems was 
invaluable in formulation of the basic statements of the above theory. The 
authors wish to dedicate this paper to his memory. 
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A P P E N D I X  

A constructive derivation of  the distribution (4.7) is given here. 
A shift of  the sequence X by one step gives rise to the following 

transformation T of  the unit square: 

x '={1 /x} ,  y ' - = l / ( [ 1 / x l + Y )  

[with x-= x0 +, y - - X o ,  cf. (4.5)]. The density P(x, y) defines the invariant 
measure for this transformation. It is natural to suppose that P(x, y) is a 
symmetric function of  x and y. This means that the measure is invariant with 
respect to the transformation S(x, y) = (y, x) and hence with respect to the 
product ST. Evidently ST(x, y) = (x', y") with 

x"=l / ( [1 / x ]  + y), y " = { 1 / x }  

Evidently S T  has a first integral H = 1Ix + y. On the line H = const - c the 
transformation has the form 

x" - + y =  +c---=C-x 

Hence the invariant measure density of  S T  must be of  the form 

With the account taken of the symmetry P(x, y )= P(y, x) we g e t f ( c ) =  c -2 
and hence (after normalization) the result (4.7). 

NOTE A D D E D  IN PROOF 

We were recently informed by D. E. Chernoff  that the formula (4.8) 
(for the probability distribution introduced in Ref. I)  was independently 
derived by him in an unpublished essay. 

REFERENCES 

1. E. M. Lifshitz, I. M. Lifshitz, and I. M. Khalatnikov, Soy. Phys. JETP 59:322 (1970). 
2. L. D, Landau and E. M. Lifshitz, Classical Theory of Fields, 4th edition (Pergamon Press, 

New York, 1976). 
3. E. M. Lifshitz and I. M. Khalatnikov, Adv. Phys. 12:185 (1963). 
4. V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 19:525 (1970). 
5. V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 31:639 (1982). 



1 14 Khalatnikov et al. 

6. E. M. Lifshitz, I. M. Khalatnikov, Ya. G. Sinai, K. M. Khanin, and L. N. Schur, Soy. 
Phys. JETP Lett. 38:79 (1983). 

7. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory (Springer Verlag, Berlin, 
1982). 

8. D. F. Chernoff and J. D. Barrow, Phys. Rev. Lett. 50:134 (1983). 
9. J. D. Barrow, Phys. Rev. Lett. 46:963 (1981); Gen. ReL Gray. 14:523 (1982); Phys. Rep. 

85C:1 (1982). 


